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Abstract— This research aims at finding tonalities in an unsupervised manner, exemplifying J. S. Bach’s four-part
chorales. Although the modern tonality of 24 keys was already the mainstream in J. S. Bach’s era, some of the chorales
retained the feature of church modes and thus were not written in the same tonal system as current ones. We propose a novel
framework for unsupervised learning of mode categories by extending the neural hidden semi-Markov model (HSMM) to a
teacher-student learning architecture. While the teacher model equips an elaborated network for calculating the transition
probability, the student model simplifies it to a learnable matrix just like a conventional HSMM. We prepare multiple
student transition matrices and expect them to represent prototypes of modes. We cluster chord sequences obtained from
the teacher model to mode categories by simply comparing the count of chord transitions with the transition probability
matrices of students. The student transition probability matrices are tuned by a gradient-based optimizer so as to increase
the marginal probability for sequences of observations. Experiments show that the three-students model satisfactorily
represents clusters of major, minor, and dorian mode. In addition, tuned student transition matrices are consistent with
known chord functions of tonic, dominant, and secondary dominant.

Index Terms—Unsupervised learning, Neural hidden semi-Markov model, Tonality detection, Sequence clustering.

I. INTRODUCTION

Unsupervised learning is a kind of technique to discover
hidden patterns from raw data without human supervision.
The motivation of this study is an autonomous acquisition
of knowledge from data, and to examine to which extent the
obtained patterns match or differ from the textbook theory
by humans. Music is one of the challenging objects to be
analyzed because of its rich diversity and creativity. In music
analysis, the identification of key is accepted as one of the
most important process [1], [2]. Modern tonal system assumes
24 keys by 12 tonic pitches for each of major and minor1.
Keys are classified into modes according to the order of
whole tones and semitones. Modern tonal system only has
two modes: major and minor (ionian and aeolian, repectivly),
which survived from various church modes in the medieval
era [3]. However, not every kind of music strictly follows the
modern tonal system, especially in post-romanticism music.
In addition, a modern tonality includes a notion of local key
change, a modulation; however, it is restricted to related keys,
and thus a chord in modulation is referred to as a borrowed
chord in most cases [4].

Most preceding works of key-finding algorithms have pre-
supposed the modern tonal system of 24 keys [1], [2], [5],
[6], [7], [8]. In contrast, we aim to automatically obtain a
set of tonalities that appeared in targeted pieces. In particular,
we consult J. S. Bach’s four-part chorales in this study. Even
though the modern tonal system was already the mainstream
in J. S. Bach’s era, several pieces retained the feature of church
modes. To the best of our knowledge, few computational
studies have focused on finding of modes [9]. Therefore,
several works of unsupervised computational music analysis
have excluded pieces written in church mode [10], [11], [12].
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1Each key consists of seven pitch classes, with five whole tones and two
semitones, and is represented by a scale that is an ascending sequence of
pitches from the tonic tone.

However, excluding pieces that do not follow the modern tonal
system would conflict with the concept of data-oriented music
analysis aiming to reflect the diversity of targeted data rather
than relying on textbook knowledge.

One difficulty in identifying modes is that different modes
share the same constituent pitch-classes. Most key-finding
algorithms were based on the frequency of each pitch-class
represented as a histogram [1], [2], [6], [7], [8], [9]. However,
pitch-histogram-based results would be equivocal when there
is no difference in a set of observed pitch-classes. For example,
V − I in major keys was regarded as highly ambiguous
between C major and G major [5]. Such problems would
be found in distinguishing modes (major/minor or church
modes). Therefore, several works took chord progressions into
consideration for key detection [13], [14]. The case mentioned
above is more likely to be C major since it is the dominant
motion.

Our approach of finding modes is based on the clustering
of chord progressions to consider the ambiguity of pitch-
class frequencies between modes. In contrast to Jazz and
Popular pieces where annotated Berklee chords are often
available, identifying a chord sequence from a complicated
surface musical structure is another challenging task. We
apply a neural hidden semi-Markov model based on [15] to
classify chords. The previous work found the difference of
tonalities by separately counting the transitions of classified
chords for major, minor, and dorian pieces [15]. By extending
the model into a teacher–student architecture, we classify
chord sequences into modes. In particular, we prepare multiple
student models to represent different modes.

We experiment with our model on J. S. Bach’s four-part
chorales dataset [16]. We evaluate obtained results with a
publicly available human analysis [16]2. We demonstrate that
the three-students model achieves the best F1 score. The
three clusters correspond to major, minor, and dorian modes,

2https://github.com/cuthbertLab/music21/tree/master/music21/corpus/bach/
choraleAnalyses
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respectively, which are consistent with the top three modes in
the corpus [17].

This paper is organized as follows. In the next section (II),
we propose our model. We first overview the related work
that is utilized as the teacher model in Section II-A and then
detail the clustering model with teacher-student architecture
in Section II-B. In Section III, we show experimental results
and discuss them. Finally, we summarize our contributions in
Section IV.

II. UNSUPERVISED CLUSTERING OF TONALITY

We propose a methodology to obtain a set of modes that
appeared in targeted pieces by classifying chord transitions,
which is an extension of the neural hidden semi-Markov
model [15]. We employ it as a teacher model that classifies
surface pitch-class vectors into chord categories and also gives
counts of transitions between chords. We also prepare student
models that simplify the network for calculating transition
probability by replacing it with a set of learnable matrices
just as the conventional hidden semi-Markov model (HSMM).
The model equips multiple students (i.e., transition matrices),
which are expected to represent different modes. Note that
the teacher model does not know the difference of modes, but
students discover it by the learning. In this sense, students
are not just simplified versions of the teacher model. We
illustrate the architecture in Fig. 1. We describe it in detail
in Section II-B. Before that, we overview the neural hidden
semi-Markov model in the next section.

A. Neural Hidden Semi-Markov Model

The neural hidden semi-Markov model is an extension
of the hidden semi-Markov model (HSMM). While conven-
tional HSMMs represent transition, duration, and emission
distributions as learnable matrices, neural HSMMs utilize
neural network components to calculate the categorical dis-
tributions [15], [18]. An advantage of using neural networks
is that additional contexts such as beat positions and pitch-
class vectors can be employed to calculate the distributions.
As illustrated in the upper part of Fig. 1, the model receives
a sequence of observed pitch-class vectors and outputs a
sequence of hidden states that represent chord categories. The
additional contexts help the model obtain clearer chord clusters
than the conventional HSMM [15].

We basically follow the implementation of [15] for the
teacher model with eight hidden states that were found to
represent chords on diatonic scales and frequent borrowed
chords. However, we remove the additional context of pitch-
class histograms that ought to be acquired after the analysis
of the entire phrase in order to focus on a purely transition-
based model. Then, categorical distributions are calculated as
follows.

Hidden State Transition Probability:

aij = softmaxj(MLP([si;ht])) (1)

ok = tanh(MLP(vpitch
k ))

ht = LSTM(ok,ht−1)

where aij is transition probability, i, j are indices
of hidden states, si is a learnable feature of hidden
states, and ht is an additional context of embedded
feature of preceding observations by Long-Short
Term Memory (LSTM). ok is an observation embed-
ding that is obtained from the corresponding pitch-
class vector vpitch

k . MLP is a Multi Layer Perceptron
with a hyperbolic tangent (tanh) activation function
after each hidden layer.
Hidden State Duration Probability:

piτ = softmaxτ (MLP([si; r
beat
t ]))

rbeatt = MLP([vtimesig ; vbeatt ])

where piτ is duration probability and τ is state
duration. rbeatt is an additional context of beat infor-
mation consists of information about a time signature
vtimesig and a beat position vbeatt .
Emission Probability:

bik = softmaxk(s
T
i ok+lk) =

exp (sTi ok + lk)∑
k′ exp (sTi ok′ + lk′)

where bik is emission probability, ok is the same
observation embedding used in the network for state
transition probability, and lk is a bias value.

B. Clustering by Teacher-Student Architecture

We aim to classify chord transitions and obtain mode cat-
egories by extending the neural HSMM with teacher–student
architecture, illustrated in Fig. 1. The learning procedure is
summarized as follows.

1) Obtain a sequence of hidden states (i.e., chord cate-
gories) from the teacher model described in the previous
section.

2) Count transitions between chord categories where we
omit self-transitions. We normalize the obtained count
matrix Mcount = (cij) so as to meet

∑
j cij = 1.

3) Select the closest matrix in the student model where
the similarity is calculated as Frobenius inner product
of the count matrix (cij) and student transition matrix
(qij):

∑
ij cijqij .

4) Calculate the marginal probability logP (x) (where x
is a sequence of observation indices) with the selected
student’s transition matrix by the forward algorithm [19],
[20] and optimize the transition matrix by a gradient-
based optimizer.

The student model simplifies the neural network for transition
probability (1) to matrices. With this simplification, we can
easily obtain mode categories by comparing the Frobenius
inner products of students’ transition matrices and the count
matrix for chord transitions.

The student transition matrices are implemented as learnable
vectors and thus optimized by learning so as to become
prototypes for modes. On the other hand, the teacher model
and other parameters (i.e., networks for emission distribution,
duration distribution, and additional contexts) are fixed and
shared by the teacher and students.
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Fig. 1: Illustration for framework of proposed method.
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III. EXPERIMENTS

A. Dataset
TABLE I: The statistics of dataset.

train dev. test
# piece 176 49 65

# phrase 1100 301 418

We use the same dataset as [15], consisting of J. S.
Bach’s four-part chorales from the Music21 Corpus [16].
We randomly divide pieces into training, development, and
testing sets. In addition, we specially reserve the pieces the
Riemenschneider number of which are 20 and under for testing
since a human annotation for them is publicly available [16].
Then, we split a piece into phrases at each fermata that
indicates the end of a lyric paragraph in chorales and regard
each phrase as an independent sequence. The statistics of the
dataset are shown in Table I. Here, we only use four-four
time (4/4) pieces and exclude pieces that are not four-part
voices or have some problems, such as a collapsed format.
Thus, we have 13 testing pieces with the human analysis.

We normalize pieces so as not to have key signatures.
While some pieces are not written in the same system of key
signatures as the modern tonal system since they retain feature
of church modes, we do not distinguish them beforehand
by our human judgement. We transpose keys in the human
analysis [16] in the same manner. The statistics of keys after
normalization in the human analyses for the 13 pieces are
shown in Table II.
TABLE II: The statistics of keys in the human analysis [16].
We regard sixteenth notes as one time step. Pieces are pre-
transposed so that they have no key signature.

C F G a d e g
1196 176 360 570 598 8 66

B. Results and Discussion
1) Evaluation by Perplexity

In order to evaluate unsupervised statistical models without
any reference data, perplexity3 is used as a standard met-
ric [15], [21]. However, previous works found that models
with a larger number of parameters (e.g., the number of hidden
states) scored smaller (better) perplexity, and thus finding an
optimal setting of hyperparameter was hardly discovered by
only consulting the perplexity [15], [21]. We varied the number
of student matrices (i.e., cluster of modes) among 2 – 16.
We expect an appropriate number of clusters to exist in this
range since the modern tonal system has two modes while
the medieval church modes are often categorized in 8 – 12
modes. Obtained perplexity for development and testing sets
are shown in Fig. 2. We observed perplexity of a larger number
of students basically contributed to a better score of perplexity.
However, we also noticed in Fig. 2 that when the number of
students was larger than 4 or 6, the improvement of perplexity
became less significant. This finding is consistent with our
intuition that the number of modes is not so many. However,
we admit that finding the optimal number of students only by
perplexity is difficult.

3Perplexity: P = exp
(
− 1

T
lnP (x)

)
where x is a sequence of observa-

tions.

(a) Perplexities on the development set.

(b) Perplexities on the testing set.

Fig. 2: Averaged perplexities by three trials for with random
seed of {0, 1, 2}. The number of students varies among 2 –
16.

2) Evaluation with a Human Analysis
Next, we evaluate how the obtained clusters of modes are

consistent with the human analyses. We create a confusion
matrix where each element Mconfusion = (dqr) that represents
the counts of events classified to the cluster q by the model
and key r in the human annotation. Then we calculate the
Precision, Recall, and F1 scores as follows4.

Precision =

∑
q maxr(dqr)∑

q

∑
r dqr

(2)

Recall =

∑
r maxq(dqr)∑

q

∑
r dqr

(3)

F1 = 2× Precision× Recall

Precision + Recall
(4)

For each obtained cluster of mode q, we regard the corre-
sponding gold key r as the one with the maximum number
of q: maxr(dqr). Then, Precision is calculated as (2). On the
other hand, for each gold key r, corresponding mode q is
assigned by maxq(dqr), and thus Recall is calculated as (3).
Thus, Precision and Recall are in the relation of trade-off.
Therefore, we consult the F1 score (4) that is the harmonic
mean of Precision and Recall.

4The definition of Precision and Recall used here ((2) and (3)) is somewhat
different from the common definition that assumes the number of classes in
gold and prediction is the same. We use a known definition that is used for
the different number of classes [22].
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TABLE III: Precision, Recall, and F1 scores of key detection.
The human analysis [16] is used as a gold data.

#students (i) choose the first (ii) choose the last
P R F1 P R F1

2 56.11 83.17 67.01 55.97 82.95 66.84
3 67.47 79.90 73.16 67.83 79.83 73.34
4 66.76 73.37 69.91 66.76 73.44 69.94
5 65.06 63.57 64.30 65.48 63.42 64.44
6 65.98 56.04 60.60 67.40 56.39 61.41
7 64.99 50.71 56.97 66.26 51.07 57.68
8 68.75 59.66 63.88 69.03 59.87 64.13
9 64.63 50.36 56.61 64.77 50.57 56.80

10 68.04 46.95 55.56 68.61 47.30 56
11 69.03 53.84 60.49 69.32 53.34 60.29
12 64.42 38.78 48.41 65.34 39.99 49.61
13 65.48 40.48 50.03 65.84 41.12 50.62
14 67.61 37.64 48.36 67.54 38.85 49.33
15 67.76 37.29 48.10 67.33 36.58 47.40
16 66.76 37.71 48.20 66.83 37.86 48.33

#students (iii) choose the more often (iv) the most by phrase
P R F1 P R F1

2 55.04 82.95 66.18 55.42 83.13 66.51
3 67.40 80.11 73.21 68.07 82.53 74.61
4 67.33 74.29 70.64 70.48 77.71 73.92
5 65.34 64.56 64.95 69.28 68.07 68.67
6 65.98 57.10 61.22 66.87 60.24 63.38
7 64.99 51.49 57.46 66.87 51.81 58.38
8 69.60 60.3 64.62 74.10 63.25 68.25
9 64.63 51.14 57.10 65.66 51.81 57.92

10 68.75 47.66 56.29 71.69 47.59 57.20
11 70.03 54.47 61.28 74.10 56.63 64.19
12 64.42 39.84 49.23 66.27 41.57 51.09
13 65.91 41.55 50.97 67.47 42.77 52.35
14 67.97 38.71 49.32 71.69 40.36 51.65
15 68.18 37.71 48.56 71.69 36.75 48.59
16 67.83 38.71 49.29 72.89 40.36 51.95

The obtained scores are shown in Table III. The human
analysis often assigns two keys to pivot chords5. We calculated
the score with three settings for pivot chords: (i) choosing
the first key, (ii) choosing the last key, and (iii) choosing the
key that appeared more often in a phrase. We did not find
significant difference among the three settings in the obtained
results. While modulations often occur within phrases, one of
our model’s drawbacks is that it can only detect a mode by
phrase. Therefore, we also examined the score by (iv) selecting
the most appeared key in a phrase from human annotations.

We found that the three-students model achieved the best
F1 score in all settings. While a larger number of students
contributed to the improvement of Precision, it degraded
Recall as a trade-off. The confusion matrix for the three-
students model (Fig. 3b) showed that student 0 was mainly
classified into d minor, student 1 to C major, and student 2
to a minor. While the human analysis [16] uses key labels
of modern tonality, d minor would correspond to dorian
mode. Discovered three modes (C major, a minor, dorian)
are consistent with another analysis [17] where a considerable
number of pieces are classified into dorian mode.

We found that G major cluster was added by the second-best
four-students model (Fig. 3c). This finding is understandable
since G major is the fourth most key in the human analysis
(Table II). Finally, in the eleven-students model that scored
the best Precision, we found that some students seemed to
represent a mixture of keys. For example, while student 4 was

5A pivot chord is a chord that is shared by multiple keys.
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Fig. 3: Confusion matrices of clustering results where the key
that appeared more often in a phrase are chosen for pivot
chords.

a clear cluster of d minor (dorian), student 0 was a mixture
of d minor and F major.

3) Discussion on Transition Probability
In this section, we show the obtained prototypes of chord

transitions for the three discovered modes in Fig. 4b, 4c,
and 4d. Note that each hidden state represents a chord cat-
egory, which is shown in Fig. 4a. Although the clusters of
modes were obtained unsupervised, the transition probabilities
appropriately reflected the difference of feature of chord transi-
tions. For example, the dominant motion G → C and motion of
secondary dominant {d, D} → to dominant G are noticeable
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(b) The transition distribution of cluster 0 for the 3-students model.
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(c) The transition distribution of cluster 1 for the 3-students model.

C

G

F

aE, e

A d, D

Others, g, Rest

Others, g, Rest E, e a G A C F d, D

Others, g, Rest E, e a G A C F d, D

Others, g, Rest E, e a G A C F d, D

(d) The transition distribution of cluster 2 for the 3-students model.

Fig. 4: Obtained emission and transition distributions for the 3-students model.

in student 1, representing major mode. Unlike student 1, in
student 2 representing minor mode, G major chord (hidden
state 3) has a larger transition probability to a minor chord
rather than C major chord.

The transition probability from hidden state 7 (d minor
or D major chords) shows the difference among the three
modes. In student 0 (dorian mode), hidden state 7 (s7) has
considerable transition probability to hidden state 0 (Others,
or g, as secondary dominant) and hidden state 4 (A major as
dominant). On the other hand, in student 1 (major mode), s7
has the largest transition probability to hidden state 3 (G major
chord), and thus it seems to work as the secondary dominant.
Finally, in student 2 (minor mode), s7 tends to proceed to s1
(E major/minor chord) as the secondary dominant in a minor.

IV. CONCLUSION

This study proposed a novel methodology for unsupervised
sequence clustering, extending the neural hidden semi-Markov
model to the teacher-student architecture. In particular, we
simplified the architecture of transition probability to learnable
matrices, which we called students, and tuned them by the
gradient-based optimization with the loss of the marginal
probability by the student model. Although we focused on
musicology in this study, the proposed model is not limited

to it but also potentially applicable to a broader domain of
knowledge discovery.

We expected that learned transition matrices of students
represented prototypes of modes and classified sequence of
chord transitions into mode categories by selecting the closest
student’s transition matrix. We experimented with the pro-
posed model with multiple settings of the number of students:
2 – 16 and evaluated the obtained clusters by consulting
the human analysis. As a result, the three-students model
was the most consistent with the human analysis in terms
of the F1-score. By looking at the confusion matrix, we
found that the obtained three clusters corresponded to dorian,
major, and minor modes, respectively. In addition, the tuned
transition matrices reflected the difference between modes,
consistently with known chord functions of tonic, dominant,
and secondary-dominant. Thus, our model found an appropri-
ate cluster of modes without relying on human knowledge.

Despite the efficacy of our model, there remain several
limitations in this study. First, the proposed model was limited
to phrase-based clustering and thus did not dynamically detect
a change of modes. However, the length of each phrase
separated by the fermata position was usually two or three
measures, which was not very large, and thus the matrix
of counts of chord transitions was quite sparse. We found
appropriate clusters of modes from such sparse count matrices.
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Therefore, we hope to extend it to a dynamic model. Second,
we could not find the optimal number of clusters only by
perplexity but found it by consulting a human analysis as
gold data. Utilizing architecture such as the Bayesian non-
parametric method that enables us to find an optimal number
of clusters is another important future work.
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